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A ‘Unified Discussion of High.Q Waveguide

Filter Design Theory*
HENRY J, RIBLET~

Summary—For the general design of conventional, high-Q, di-

rect-coupled waveguide filters to be based on the frequency behavior

of a classical ladder network prototype, it is necessary and sutlicient

that the reflecting elements of the filter be replaceable by admittance

invertem and that the lengths of transmission line be replaceable by

resonant elements. The error due to the latter assumption is of the

order of twice the square of the percentage bandwidth measured in

guide wavelengths, and the classical synthesis problem is a limiting

case of ii solvable transmission line problem. In this limit, an exact

equivalence is established between the design of a direct-coupled

filter and the design of a quarter-wave-coupled filter based on the

same ladder network prototype. Design formulas for equal ripple

and maximally flat performance are given for the VSWRJS of the re-

flecting elements in terms of dimensionless quantities, Detailed

comparison of previous formulas is made.

INTRODUCTION

F

.r

HIS PAPER is concerned with the general design

of filters which consist of a cascade of large,

lossless, similar, reflecting elements, often shunt

inductances, spaced in a regular manner on a uniform

waveguide. Lawson and Fanol have given general syn-

thesis procedures for two types of filters distinguished

as “quarter-wave-coupled” and “direct-coupled.” For

both types of filters, they give explicit synthesis pro-

cedures based on the use of a ladder network prototype

having a prescribed insertion loss function. Southworth2

has given the design parameters for direct-coupled,

maxim ally flat filters without, however, any supporting

synthesis procedure. Mum fords has given the design

parameters for quarter-wave-coupled, maximally flat

filters, and has improved on the approximation used by

Lawson and Fano for the interconnecting, quarter

wavelength of waveguide. He has used the synthesis

procedure proposed by Lawson and Fano. Recently,

Cohn4 has given design parameters for direct-coupled

filters, for equal ripple, and for maximally flat response.

He has employed a ladder network prototype explicitly

and has used a frequency transformation which im-

proves the approximation for shunt inductances.
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A general synthesis procedure for the design of direct-

coupled filters has been given by Riblet5 but since it is

not based on the use of a ladder network prototype, it is

not within the scope of this paper.

The multiplicity of papers in the literature which are

concerned with the design of direct-coupled Iilters

(Fig. 1), is a source of confusion to the ciesign engineer.

Lawson and Fano, 1 Cohn,4 and presumably South-

worth,2 base their assumptions on the same ladder net-

work prototype (Fig. 2). In spite of this similarity,

Cohn has indicated how different results are obti~ined

in each of these papers. Actually the situation is not

difficult to understand when one considers the number

of approximations involved in the synthesis procedure

and realizes that little effort has been made to justify

any of them rigorously.
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Fig. l—Schematic of a direct-coupled filter.

Fig. 2—Ladder network prototype.

The fact that the differences observed by Cohn are

minor suggests that the methods used are the same in

principle. It is the object of this paper to show that this

is the case and to unify the whole problem by putting

the approximations required for the exisf:ence of a gener-

al synthesis procedure, based on a ladder network proto-

type, on a formal basis. By way of justification it will be

indicated how the approximate synthesis is a limiting

s H. J. Rlblet, “Synthesis of narrow-band direct-coupled filters, ”
PROC. IRE, vol. 40, pp. 1219–1223; October. 1952.
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form of an exact transmission-line synthesis. As by--

products, we obtain 1) a quantitative estimate of the

error involved in the ladder network approximation, 2)

slightly more concise formulas than previously given,

and 3) a demonstration of an exact equivalence be-

tween direct-coupled filters and quarter-wave-coupled

filters using Mumford’s approximation for the quarter

wavelength of line. Finally, the general synthesis given

by Lawson and Fanol is derived, and it is shown how our

formulas for the case of direct-coupled filters may be

obtained as special cases from their formulas.

FORMAL THEORY

This section considers the consequences of the follow-

ing two simplifying assumptions.

1) The admittance transformation of the reflecting

elements, which relates the input voltage and current,

Vi and i, to the output voltage and current, V. and io,

ma~, be written

ii = 0. io + j<;vo

.i.—~ IO+o. z)o,“ – dP
(1)

where p6 is a positive real constant, to be called the

inversion factor.
~) The admittance transformation of the intercon-

necting half wavelengths of waveguide, ma>’ be writtel~

ii= I.io+o. l)o

Vi=p. io+l .%1. (2)
.

where @=j sin 0 with 0 = 27rl/&.

Now the interest in 1) and 2) arises from the fact that

they are, as will be shown in a very broad sense, neces-

sary and sufficient for the existence of a general syn-

thesis procedure for direct-coupled filters based on a

ladder-network prototype. Accordingly, differences in

previous results l’z’4 must arise from the approximations

used in relating p and $ to reactance and frequency.

HOMT this can be demonstrated is outlined in Appen-

dix 1. First, the possibility of connecting the reflecting

elements with transmission line sections having the ad-

mittance transformation,

ii = cos @io + j sin 13vo
(3)

v; = j sin OiO + cos OvO

is considered and then excluded when it is found that,

in general, the input admittance of such a cascade can-

not have the form required by ladder network proto-

types. (Note that the coefficients of ( l)–(3) are transfer

matricesT rearranged in DCBA form. ) When (3) is re-

placed by (2) such a synthesis can be carried out if,

and only if, the general circuit parameters of the reflect-

“ p is the coupling reactance, X–2, of Lawson and Fano, OP. cit.
We have chosen to denote it by p to emphasize that it is, for p~ 1,
numerically equal to VSWR of the reflecting element.

7 E. A. Guillemin, “Communication Networks, ” John Wiley and
Sons, Inc., New York, N, Y., vol. 2, pp. 144–152; 1935.

ing elements, assumed to be analytic in P, simplify to

the form in (1). Eq. (2) is justified further in Appendix

II, where it is shown that if the admittance inverters,

designed on the basis of a ladder network prototype,

are equally spaced on a uniform transmission line, and

and if the inversion factors are allowed to become arbi-

trarily large so as to preserve the form of the insertion

loss function, though not its bandwidth, then cos 0

tends to unity and the upper-corner sin % tends to zero,

and (2) is exact. Of course, the validity of (1) remains to

be established in each application.

To show that a direct-coupled filter consisting of a cas-

cade of alternate (1) and (2) matrices corresponds to

every ladder network prototype readily follows with the

help of the equalities,

and

K)=c :)(::)(:“3 “)
Consider a ladder network prototype which can be

written in matrix form as

(:-:P)(::)(:?’)“ ““c:)(::*) “)
since the first and alternate matrices are the admittance

transformations of shunt resonant elements and the

remaining matrices are the admittance inverters that

correspond to changing from shunt to series. Applying

(4) 8 to the resonant elements of (6) and eliminating the

unity admittance inverters by means of (5) results in

the matrix product,

which is of the required form if

PI = fl, P2 = -fI”.fz, “ “ “ , P. = ‘f?, “fn-1, Pn+l = f?,. (8)

The converse is not generally true, but if we terminate

the direct-coupled filter, we can always find a termi-

nated ladder network prototype with the same input

admittance function. Accordingly, it is convenient to

carry through a general synthesis procedure for the

determination of the p’s without requiring the f’s. We

now consider the admittances seen at various points of

the network assuming a known terminating admittance.

If Y;= N;/D;, where Ni and D; are polynomials in p,

is the admittance preceding

(9)

a Any common multiplicative factors may be ignored because
they cancel out of numerator and denominator once a terminating
admittance is selected and the input admittance is determined.
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and 1’,.-1 = iVi-l/Dj-l is the admittance into which it is

transformed by (9), then

N-l = p{PNi + piDi~ Di-l = Ni. (lo)

If the admittance, Y.+l, terminating the cascade is a

constant, then Y. is a first degree polynomial in ~. In

particular, the degree of N. is one higher than the de-

gree of D.. This is true for all admittances looking into

the admittance inverters. For, if it is true for Ni and Di
in (10), it is certainly true for N~_l and Di–1. Thus the

input admittance of a cascade of the form of (7) is a

rational function of ~ whose denominator is of degree

n in @ while its numerator is of degree n — 1. It is, of

course, positive real in the sense of Brune. g Of course

the input impedance of the network can be determined

from the given insertion loss function by the method of

Darlington. 10 Then the p; associated with Y;–1 can

alwa~-s be determined by dividing the coefficient of the

highest power of @ in its numerator by the coefficient

of the highest power of P in the denominator. This fol-

lows from (10). We also see that ~; equals the denomi-

nator, Di–1, of Y,_l divided by the remainder when

iVi_l/p, is divided by Di_.I.

This procedure can be summarized in a continued

fraction expansion for the input admittance, YO, of

Thus, for every terminated direct-coupled filter there is

a corresponding terminated ladder network prototype

having the same input impedance, although the tc;rmi-

nations are not in general the same. This is precisely

the equivalence used by Lawson and Fanol to give a

general synthesis procedure for direct-coupled filters.

This discussion, however, avoids the troublesome react-

ance, Xs and XL which were invoked by them.

In general, the values of P which are of practical inter-

est are small, whereas the formulas due to Bennettl’ and

Belevitch (modified by Orchard) lZ for the element

values, j,, of the ladder network prototypes yieiding

maximally flat and Tchebycheff performance assume

that the value of the frequency variable u is equal to

unity at the edges of the pass band. Accordingly, we

consider the effect of replacing P in (11) by tp. We then

find that the form of the continued fraction can be pre-

served, if we multiply numerator and denominator of

each fraction bar by t. The resulting continued fraction

is

Plt
Y, = pltp + ——

p2t2
p#p +

the cascade terminated in an admittance,

Yo=p,p+—
PI

—

P2
P2P +

R.

pn~2* + _ pnt2

(p.+,) 7/R “ ’13)

Thus a narrowing of the frequency scale by a factor of

I/t is accomplished by multiplying the inversion factors

D. at each end of the filter by t and all of the other inversion

PILP +

(Pn+l)/R “ ’11)

The use of the continued fraction expansion simplifies

certain manipulations once it is clear that the value of

170 is unchanged when one multiplies the quantities

directly above and below any of the fraction bars by

the same quantity. Thus in (10), we may replace the

second pl by 1, if we divide both pz’s below it by pl.

Thus 170 can be written

factors by t2.

For narrow-band filters, the dimensional tolera rices

are relaxed by replacing some or all of the half wave-

lengths of waveguide by sections an integral number of

half wavelengths long. Increasing the length of a filter

in this way also increases its peak power handling abil-

ity. In fact, it is readily shown, by the methods of this

section, that for fixed band-pass characteristics the

maximum voltage in a given cavity section I’aries

1
I’-, = p@ + –-

1
(PU’PJ$ + ——

()

1
~fi p + ‘—”

p~

.———————— ——— —

( PP@rL-2“ “ “ )
pnp.–~ . . . R

— p+ (12]
P?l–IPII–3 “ Pn+lpn–1 “ “ -

——

90. 13runej “Synthesis of a finite two-termimd network whose H Mr. R. Bennett U, S. Patent .No. 1,849,656; March Is, [9S2.

driving point Impedance is a prescribed function of frequency, ” ~. 12V. Belevitch, “Tchebyshev filters and amplifiers networks, ”
Math. Plzys., vol. 10, pp. 191–236; October, 1931. Wi?elcss Eng., vol. 29, pp. 106-107; April, 1952.

‘0 S. Darlington, “Synthesis of reactance 4-poles, ” J. Llaffi. H. J. Orchard, “Formulae for ladder titters, ” Wiretess Ew:., \-ol.

Phys., vol. 18, pp. 257–353; September, 1939 30, pp. 3–5; January, 1953.



362 IRE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES October

inversely with the square root of its length measured in

half wavelengths. The change in ( 19)–(22) required to

give the same pass-band characteristic when the length

of a given transmission line section is increased to n half

wavelengths is readily seen from (11). Here, if the cor-

responding ~ is replaced by rqb, no change in YO results

when the adjacent inversion factors are divided by n.

This section is concluded by establishing the exact

equivalence between a direct-coupled filter and a quar-

ter-wave-coupled filter (Fig. 3) employing Mumford’s

approximation for a quarter wavelength of waveguide.

Fig. 3—Schematic of a quarter-uave-coupled filter.

First, the admittance transformation,

(kp 1 + (kp)’

1 )kp ‘
(14)

for k = ~ (quarter-wave coupling), 3/2 (three-quarter-

wave coupling), etc., is that used by Mumford3 to

approximate sections of waveguide an odd number of

quarter wavelengths long. We are required to show that

a matrix product of the form,

(1 (f, – k)p

)(

k~ 1 + (kp)z

)(

1 (f2 – 2k)p

o 1 1 k$ o 1 )

( 1 (f. – k)p. . .
0 1 )j (15)

is precisely equivalent to (7), since we have already seen

how in (4), the matrices involving the ~i’s are the ad-

mittance transformations of resonant cavities, except

for a multiplicative factor. This is done by replacing

the first and last terms with the help of the identities,

‘(-:px x 3’ ““
and the other terms involving ~’s by using the identity,

1 (ji – 2k)p
+i(o ~ ). (17)

Then the matrices

using the identity,

nvolving 1 + (k~) 2 are eliminated

()o fifi+l
10

‘c -3(: ‘+Y2)(-l?!? ’18)
This equivalence, of course, only operates ill one direc-

tion. For a direct-coupled filter network there is no

equivalent quarter-wave-coupled filter network, in gen-

eral, without specifying the termination.

DESIGN FORMUI.M

When expressions for f~,ll, 12 are substituted in (8,)

and suitable allowance is made, according to (13), for a

change in frequency scale, general formulas are obtained

for the VSWR’S of the reflecting elements of maximally

flat or equal ripple, direct-coupled filters. The equiva-

lence between (15) and (7), results in similar formulas

for the VSWR’S of the reflecting elements of quarter-

wave-coupled filters. Table I gives these formulas to-

gether with the figures, equations, and definitions re-

quired for design purposes.

Table II gives formulas for the line lengths separating

the reflecting elements, together with an equation and

the definitions required for design. These formulas are

conventional except for the allowance for end effects.

This addition has been made because the author’s expe-

rience shows that in some applications end effect cor-

rection must be taken into account in order to avoid sig-

nificant experimental error.

The use of Table I formulas requires the determina-

tion of k (for equal-ripple performance), n, COO,and t

in that order. The value of k is readily obtained from

the tolerance given for the pass-band ripple or \JSWR.

Selection of n is made to yield the desired skirt steep-

ness. The formulas for PL are used for this purpose

where a equals a frequency scale factor multiplied by

the departure of the frequency from the filter midband.

For quick estimates this can be done in terms of fre-

quency but for greater accuracy the use of guide wave-

lengths is recommended. Once n and h are fixed, OJo is

found from the corresponding expression for PL. For

exampie, if a two-section maximally flat “filter is speci-

fied to have 10-db loss at frequencies corresponding to

A,, and h,,, then PL= 10= 1 +tio~, so that UO = +’~.

Where the bandwidth of a maximally flat filter is speci-

fied at the 3-db points U. = 1; if the bandwidth of all

equal ripple filter is specified at the extremes of the

equal ripple tolerance, tio = 1. The t occurring in the

formulas is a generalization of the notion of total Q

introduced by Mumford. It is determined b~- the re-

quirement that t sin 6 = coo for the two specified guide

wavelengths h,,,, and Agz at which symmetrical behavior

is expected.

DEFINITIONS FOR TABLJZ I

The V“SWR of the reflecting element is p. PL is the

insertion loss function obtained by dividing the avail-
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TABLE I

363

Direct-Coupled

Filter

Quarter-Wave-Coupled

Filter

IiW~RSIO~ FACTOR FORMULAS

Equal Ripple

4 sin 31~.sin :
2%

————.—.

~2 + ~inZ 1
n

(19

(2; – l)7r (2; – 3)rr
4 sin ——2;—. sm —7fl——

Maximally Flat

p,=t.2 sin ~
2%

(20)

P*+1 = PI
.—

2 sin Z

PI = t .———L%— – k
Y

2 sin 3~. y

02 = t .—————__ _ z~

72 + sin2 -I-
n

Zsinp–l)rr. ~2+sin27J . . .

2n ( n )=t.———————
2?r

– 2k

( )
~. .-y2+sin2_ . . .

%

p,, = PI

(W odd only)

(21)

pL=t.2sin ~-k
2%

h
p.z= t.2sinz — 2k

(22)

~i=t2sin~–l)r_2k

2% —

p.. = PI

T.%BLE I Cent’d next @age
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TABLE I (Cent’d)

Definkg Equations

PL = 1 + [hT.(co)]j

1 PI, =l+uP*
y = sinh ~ sinh–l y (23)

n

TABLE II

LINE LENGTH FORMULAS

1{ = k.
‘&L- e+*2e) - ‘i- “+1b, + b,

DEFINING EQUATION

(145), we have t= l/Lw. Hence their (156) to (159)

are seen to be equivalent to (26), except for the sub-

script on L which should be a superscript. Conse-

quent] y (19) and (20) are essentially special cases of

general formulas given in their paper.

Eqs. (160) to (163) I can also be obtained. According

to Lawson and Fano, w is the frequency bandwidth for

unity value of a’ so that our value of COO=1. .Thus by

(24),

where AhQ =h~l —Aoz and A~O is the mean guide wave-

able power by the power into the load. The number of

resonant sections is n. The pass-band, insertion-loss

tolerance is given by h and is related to the maximum,

pass-band VSVW2, p~.x, by

L = (pmax-1)/(2tiPmax).

In the expression for t,A,,and &2 are the guide wave-

lengths at which the skirt insertion loss is specified and

UO is the corresponding value of co determined from PL.

k = ~ (quarter-wave coupling), and 3/2 (three-quarter

wave coupling), etc. u is equal to t.sin (m& O/hQ), where

&O is the mean guide wavelength given by 2A,, .hg,/(hgl

+~.,) + (&l+&,) /2.

DEFINITIONS FOR TABLE II

e is unity for direct-coupled filters and zero for

quarter-wave-coupled filters. T; is the end effect error

associated with the ith reflecting element. @ is positive

for series capacities and shunt inductances, and nega-

tive for series inductances and shunt capacities.

COMPARISON WITH PREVIOUS RESULTS

Lawson and Fanol

Neglecting X~ and X., comparison of their (146)

with (11) of this paper indicates that pi= Xi–z. We

note that (8) can be written, with a suitable frequency

transformation

m = G, P2 = t2GL, P3 = i2LG, “ “ u , PTL-I-1

= t.(Cnor Ln). (27)

Since our t is defined to be the reciprocal value of sin O

at the band edges, and p is equivalent to Z in their

length. Now

so that

2102 (,q
t~—

kgozow ‘

and finally since (ko/Ago) 2 = 1 — (COC/COO)2 we have

‘+’{1-(31”
Since

I b,]= p,’z - p,-”= p,’/2,

(29)

(30)

(31)

we obtain their (160) except that co should be w. In

their (161) and (162), Cl should be taken outside of the

radical sign.

Southworth2

If we put Cl =~1 = 2 sin 7r/2n in (160) of Lawson and

Fano,l we immediately obtain (9.2-7) of Southworth.

His (9.2-8) is immediately obtained from (20), if we

use the above approximation for t, put I ~~ \ = ~~~

and replace the product of sines by the difference in

cosines.

Mumford3

It is clear from (A1O) of Mumford3 and (27) of this

paper that in the narrow-band limit, Q~ is approxi-

mately equal to ~t/2 when co. is chosen to be unity.

Now the fi’s that occur in (6) when multiplied by n-/4
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are precisely the Q,’s in his (15) in the small angle limit.

Thus (22) can be written:

(?, = Q,.

These are precisely hlurnford’s results when the selec-

tivities of the coupling lines are included.

If assumption 1 is satisfied by the reflecting elements,

then the above remarks concerning Mumford’s paper are

true. This condition, though sufficient for a synthesis of

quarte f-wave-coupled filters, in terms of a ladder net-

work prototype is not necessary. As explained in Ap-

pendix 1, it is possible to define the Q of a cavity termi-

nated in more general reflecting elements. For such

cases, the characteristics of the reflecting elements can

be determined from the required Q’s by means of for-

mulas derived [or each case. For the cases of usual

interest, three such formulas have been given in Riblet

and Reed. 13 There it was pointed out by Reed that the

formula relating to the case of constant susceptance is

ecluivalent to Mumford’s. It is also indicated that the

formula for the inductive case is equivalent to that given

by Reed. ~~

Eq. (’22) gives the value of pi directly sil~ce it can be

shown for the inductive case, that the error in approxi-

matk~ Q, hy 7r/4p, is of the order of 403/5.

Cohn’

The value of L h Fig. 5 of Cohni is the same as the

t–l used in this paper except for a typographical am-

biguit~ and the use of the small angle approximation.

The values of X~,~+l, except possibly for sign, follow from

For completeness, the frequency transformation due

to Cohnl is derived at this point. In the limit of large

susceptxmces, p, = bin. From (13), we see that a frequency

variation common to the inversion factors can be in-

cluded in the frequency variable. NTow, if p ~= p, f2(~)

with p; constant, the theory is applicable when we re-

place 19 by j(@) ~~ except for a relatively small error in

the end elements. For inductances which vary directly

as ~, (this is approximated by waveguide irises), f(~)

=&/~,,, Iuhere h., is the midband guide wavelength.

Then

P = .iLk sin (T&o/~O). (32)

‘3 ]. Reed and H. J. Riblet, “Discussion on synthesis of narrow-
band direct-coupled filters, ” PROC, IRE, \-ol. 41, pp. 1058–1059;
August, 1953. See (4).

“ J. Reed, “LOW Q microwave filters, ” PROC. IRE, ITol. 38, pp.
793-796: July, 1950. See p. 794.

Using the small angle approximation for siu 0, we h~ve

with h~O= (h,,l+hv,)/2, where AQI and h~? are the \{uide

wavelengths at the band edges.

This frequency ~’ariable has, as Cohn has pc,inted

out, the important property that the response curve of

the filter is symmetrical in ~, rather than in I/ho.

Curiously, (24) for tis not altered by this transformation,

a statement which is not true for capacitive irises. The

principal effect of this transformation on the design pro-

cedure is to alter the midband guide wavelength which

enters into the determination of L and 1 in (25) For

bandwidths as great as 10 per cent, and difference be-

tween the two formulas for L, due to this transf ornla-

tion, is generally less than the error due to the neglect of

Ti, and so we have given the formula for the mean guide

wavelength which is a rigorous consequence of (1) and

(2). The approximate formula is simpler for computa-

tion and is to be recommended accordingly for design

purposes whenever inductive irises are used.

Riblet5

Rible~; is coucerllecl with a first order equivalence

between direct-coupled filters and quarter-wave-coupled

filters in contrast to the zero order equivalence estab-

lished in ( 14)–( 17). Its interest lies in the fact that a

synthesis in terms of quarter-wave-coupled cavities

requires less restrictive assumptions on the nature of

the reflecting elements (see Appendix 1) than is re-

quired for a direct-coupled filter synthesis, based on a

ladder network prototype. Accordingly, the procedure

is capable of a high degree of accuracy and generality

when used with the recommended frequency ~:rans-

formation.

COMMENTS ON ASSUMPTION 1

The applicability of this assumption to practical

waveguide reflecting elements must be justified by

consideration of their properties or by the construction

of experimental filters. Admittance transformations for

shunt susceptances have been given13 which are con-

stant and which vary inversely and directly with lo.

These are correct to the first order in a frequency vari-

able, Q, where O ~ j~,i~. Written in the form of (1), these

become

where

,41 = * sin2 40 cos 00

h = do i- sin 40. cos 00,
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and the upper signs are used with inductances, the

lower signs are used with capacities, and they are re-

placed by zero for constant susceptances. Of course q50

is the value of +, previously defined, when Q = O. For

inductances, the terms on the principal diagonal tend

to zero with increasing susceptance. Accordingly the

theory is particularly applicable to this case, as Cohn4

has pointed out.

COMMENTS ON ASSUMPTION 2

The principal justification is the following theorem:

The matrix product,

has the form

co~n~ D(ft, j/t)

(

C(pt, f5/t)

Wt, #/t) )~ (Pf, #/o ‘
(35)

where.4, B, C, and D are polynomials in ptand fi/t,and

the only nth degree terms are (pt)n and (#/t)”. That is,

terms of the form p~~n–k do not occur.

When $ = P = j tan 0, the matrix product of the

theorem represents the exact admittance transforma-

tion of a cascade of admittance inverters, equally

spaced on a uniform transmission line, whose depend-

ence on t is consistent with the form obtained in (13)

from a ladder network prototype. Moreover the deter-

minant of (35) is unchanged by replacing j by zero,

and cos O by one.

Comparison of the input impedance and insertion loss

function obtained from this matrix product, with the

corresponding functions obtained with $ put equal to

zero, will indicate the error in the approximate solu-

tion. Now the coefficient of every power of P in A, B,

C, and D will contain terms contributed by P and by $

since # must be replaced by @ in an exact calculation.

Although the nth degree term contains only p“ and j’,

in general, terms of the form p“~s appear. Now the

theorem states that in each coefficient, the contribution

of P is of the order of trwhile the corresponding contri-

bution of I’ is of the order of t–r.In general then, the

error in neglecting ~ terms is of the order of I/tz,and

for the coefficient of ~“, the error is of the order of l/t2”.

The limit for large t,with tp fixed, can be attained then

by putting ~ =0 and cos 6=1.

Since the determinant of (34) is unity, the insertion

loss function is given, in the limit, by

1/4 Cos’n (8) I A (pt) + B(pl) + C(pt) + D(pt)I‘. (36)

This is an even polynomial in tan 8 of the form,

~2ntzn tanzn f) + a2n–2tn–2tan~.–2 O + . . . .

Multiplication by Coszn (0) gives the expression,

‘n-z (Q Cos’ (~) + “ “ “a#n sinzn 0 + ag,Z_# “–z sm

Now the resulting terms in Cosz O can be replaced by

sinz O but the error in replacing COS2 O by 1 is always of

the order of l/tz. Thus in the exact admittance trans-

formation (24) approaches, as t+ cc,the limit obtained

from it by replacing $ by zero and p by j sin 9. Assump-

tion 2 is thus rigorously j ustiiied.

It may be of interest to observe that assumption 2

is not essential for a synthesis based on a prescribed

insertion loss function. The exact transmission line

synthesis procedure for filters consisting only of equal

length impedance transformers mentioned by Ribletls

and discussed in detail by Seidel lb is immediately appli-

cable so long as assumption 1 is valid. Seidel has arrived

at the same conclusion and has applied this theory to the

design of direct-coupled filters. He is concerned, how-

ever, with transmission line elements which are nomi-

nally a quarter wavelength long so that his results do

not appear to be directly applicable to the narrow

band problem. This paper is the direct consequence of

early efforts to carry through the exact synthesis of a

narrow band filter on the basis of the exact procedure.

when it was discovered that the ~ rootsls had to be

calculated with extreme accuracy, in order to satisfy

(2) for physical realizability, the present analysis of

the approximate solution was forced on the writer.

COISCLUSIONS

Formulas previously givenl,2,4 are rederived on the

basis of two approximations which are shown, under

general conditions, to be necessary and sufficient for a

general synthesis of direct-coupled filters having the

frequency behavior associated with ladder network pro-

totypes. Differences in the formulas, not to due to typo-

graphical errors, are traced primarily to an approxima-

tion used to express the susceptance of a reflecting

element in terms of its VSWR, and secondarily to small

angle approximations and the use of differentials in

place of differences. Formulas3 for the design of quarter-

wave-coupled filters are rederived on the basis of an

exact equivalence which is given for a direct-coupled
filter and a ‘( Mumford” quarter-wave-coupled filter.

The usefulness of the formulas is extended by showing

how the VSWR’S of the reflecting elements are altered

when the interconnecting lines are lengthened in multi-

ples of half of a guide wavelength. It is shown how other

approximate solutions !Z,4 are a rigorous limit of an exact

solution and that the error in each coefficient of the

insertion loss function, made by replacing each half

lS H. J. Riblet, “General synthesis of quarter-wave impedance
transformers, ” IRE TRANS. ON MICROWAVE THEORY AND TECH-

NIQUES, vol. MTT-5, pp. 36–43; January, 1957. See p. 38.
16H. Seidel, “Synthesis of a class of microwave filters, ” IRE

TRANS. ON MICROWAVE THEORY AND TECHNIQUES, vol. MTT-5,
pp. 107–114; April, 1957.
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Wavelength oi transmission line by a series resonant

element, is of the order of one half the square of the

percentage bandwidth measured in guide wavelengths.

APPENDIX I

We m-e concerned here with the conditions satisfied

by general reflecting elements if it is required that they

are to be used in a general synthesis of direct-coupled

filters’? based on a ladder network prototype. The proofs

assume that the primary frequency sensitive elements

of the direct-coupled filters consist of equal lengths of

transmission line which separate them or, as we shall

see, series resonant elements which approximate trans-

mission lines in their frequency behavior. Although

the assumption of equal line lengths may not be a physi-

cal necessity, it is difficult to imagine any general syn-

thesis theory based on a ladder network prototype which

does not require this simplifying assumption,

Consider the admittance transformation, (R), (D, C,

B, .1 matrix), of a symmetric, nonresonant, reflecting

element, written,

.—

It should be observed that the implied assumption

has been made that resonance, u = O, occurs whe~l the

connecting lines are all one half-wavelength long. This

assumption is no restriction, since identical line lel~gths

can be added to or subtracted from each (R,) without

changing the conditions of the theorenl or essentially

altering the input admittance function of the cascade.

Moreover, it is the assumption previously made.l,z>i,c

Proof

We require that for arbitrary (R) satisfying condi-

tions 1 and 2 that

‘R)(T)(R)‘(: 4:)”
since the right-hand matrix represents the ladder net-

work element consisting of a single resonant element

of given Q. This requirement is certainly satisfied by

the reflecting elements mentioned previously. l–s

If

al~ + a++ + a8@ + . . . j(fo + cl~ + 6202 + CJY + ~ . ~ ]

)‘R) = ( j(b, + b,O + by9’ + b:{e’ + ~ ~ ~ ) a10 + a202 + a@ + . .
— —

.4 (0) c(o) ) and
(R) = (B(o) .4 (0) ‘

–(1–6’/’2 ...) –j(6’-6’3/6 ...)

)
‘T) = ~_j(~–~’,6 . .)where .4, B, C satisfy the following conditions: _(l _&/~...)

1) .4, B, and C are analytic functions of the complex

variable 19in the vicinity of o = O, and put a = 6 —co#33, the following conditions on the co-

2) ..JZ–BC=l efficient of (R) are found.

—

al = 4/2 bO=~ co = 1/0

U2=0 bl=O Cl=o

– 43/48 + (@ – 03)L0,
5+

a~ = b, = – 48/24 – 4)/12 + 2(4J – @3jCJ3

()z4+~~–2 ~;–+ u3,
c2=— — (37)

lf ~~e denote by (T), the admittance transformation

of a uniform transmission line so that

cos (0 + r) j sin (0 + 7r)

)‘T) = (jsin (I9 + r) cos (0 + ~) ‘

then ~ve may prove the following theorem.

N3gow?z .1

If a) is a frequent>- variable assumed to be an odd

fllncti,on of 0 then matrix products of the form,

(RJ (T) (R,) (T) ~ ~ (T) (R,,+,),

cannot yield a general representation of the input impeda-

nce functio~ls in a of ladder network prototypes.

17 This ternl ~S ~efined by Fig. 2 and has also been pre~-ind}

illLlstr:ll:ecl.1.z,t.5

where $ is determined by

4Q= 1/1#12– 1.

It is interesting that for a suitable choice of the fre-

quency behavior of the reflecting elements, a shunt

resonant element can be exactly obtained with a half

wavelength of transmission line. It should be recalled,

of course, that the Q previously used3, 5,1* is on] y ap-

proximate and assumes that the resonant element is

terminated in a match.

The theorem follows, however, when an attempt is

made to combine three reflecting elements satisfying

(37). [n this case, it is readilv shown that a product of

the form (RJ (T) (RJ (T) (R3) will be, in general, of

secoud degree in a in both the numerator and the

denominator of the input admittance function. This, of

course, makes it impossible to represent the general

two-element ladder network in the required form.
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We real- now replace (T) by showing that some frequency variations in (R,) is per-

0

)

mitted. However, if one considers a cascade containing

three of these reflecting elements, then the condition
‘T) = (~~~~n (6+ T) ‘1 ‘

~ = sin o can be shown to be necessary in order that the

which is an approximation justified in Appendix I I
frequency behavior of two elemen~ ladder network

and prove the following theorem.
prototypes be representable in the given freqllencv

variable, a.

Theorem B

If u, the frequency variable, vanishes for O = O (half
.%PPE~DI~ II

wavelength spacing) and sin O is an analytic function The proof of the theorem underlying assumption 2

of co, then matrix products of the form, follows by mathematical induction.

(R,) (~) (RJ (~) . (~) (Rn+,) ,
Consider

can define the general input admittance function of all 10 Cn’l (1 ‘1 ICnp’ c“ 1
ladder network prototypes only if

( o j<;)

where

Proof

\Jre

(.4

B

(Ri)=lj o ,

[–

1t has the general form,

4E ,
( D(pt, j/t) tc(pt, j/’t)

p, is a positive real constant. II 1
IT ‘(Ot, #/t) A (Ot> I/t) I ‘

(Jg)

J

consicler consequences of the assumption that in which the highest power of P occurs in D, and the

c

)( ‘: -:)(: :)=(: ‘f)’

highest power of ~ occurs in A. Furthermore the form

A
of (39) is not changed by multiplication by matrices of

–jsm O
the form of (38), while the highest power of b still

where ~ is a constant If we put u = 0, it is readil>- showl~ occurs in D and the highest power of p occurs i n .4.

that .4(0) =0, while B(O) L’(O) = — 1. Moreover, since Thus the original product (34) can be lvritten

(.39)

2AB +j.-l 2 sin O= O, from the lower left-hand element

of the product, we conclude that A =0 orjA sin 6 = — 2B.

The latter case is excluded by the fact that B(O) #O.

From the upper left-hand element of the product, we

conclude that CB = —1 and from the upper right-hand

element that – G sin O =ja. Therefore, the permitted

form for (l?~) is

(R,) =

o d “f@ 1
-7’ 7—

sm 0
>

d–

sin 8
0

f. J

N’hen this multiplication is carried through, one ob.

tains

( c,
~— (pfc + A) Clc,,+l(ptz) + B) ~

Cn+l1

II
,.

I —— (C + }//.4) :: (D + 3/@ I
[ Clc?l+l J

This is the result claimed in the theorem. The C term in

this matrix contains (~t) ‘L and the B term contains

(t/t)’. NO cross product terms having a total degree of
n can occur.


