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A Unified Discussion of High-Q Waveguide
Filter Design Theory

HENRY ]J. RIBLETY

Summary—For the general design of conventional, high-Q, di-
rect-coupled waveguide filters to be based on the frequency bebavior
of a classical ladder network prototype, it is necessary and sufficient
that the reflecting elements of the filter be replaceable by admittance
inverters and that the lengths of transmission line be replaceable by
resonant elements. The error due to the latter assumption is of the
order of twice the square of the percentage bandwidth measured in
guide wavelengths, and the classical synthesis problem is a limiting
case of a solvable transmission line problem. In this limit, an exact
equivalence is established between the design of a direct-coupled
filter and the design of a quarter-wave-coupled filter based on the
same ladder network prototype. Design formulas for equal ripple
and mayimally flat performance are given for the VSWR’s of the re-
flecting elements in terms of dimensionless quantities. Detailed
comparison of previous formulas is made.

INTRODUCTION

r HIS PAPER is concerned with the general design
Tof filters which consist of a cascade of large,
lossless, similar, reflecting elements, often shunt
inductances, spaced in a regular manner on a uniform
waveguide. Lawson and Fano! have given general syn-
thesis procedures for two types of filters distinguished
as “quarter-wave-coupled” and “direct-coupled.” For
both types of filters, they give explicit synthesis pro-
cedures based on the use of a ladder network prototype
having a prescribed insertion loss function. Southworth?
has given the design parameters for direct-coupled,
maximally flat filters without, however, any supporting
synthesis procedure. Mumford® has given the design
parameters for quarter-wave-coupled, maximally flat
filters, and has improved on the approximation used by
Lawson and Fano for the interconnecting, quarter
wavelength of waveguide. He has used the synthesis
procedure proposed by Lawson and Fano. Recently,
Cohn* has given design parameters for direct-coupled
filters, for equal ripple, and for maximally flat response.
He has employed a ladder network prototype explicitly
and has used a frequency transformation which im-
proves the approximation for shunt inductances.

* Manuscript received by the PGMTT, November 29, 1957; re-
vised manuscript received, July 10, 1958. Presented before the URSI
meeting, Washington, D. C May, 1957.
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A general synthesis procedure for the design of direct-
coupled filters has been given by Riblet® but since it is
not based on the use of a ladder network prototype, it is
not within the scope of this paper.

The multiplicity of papers in the literature which are
concerned with the design of direct-coupled filters
(Fig. 1), is a source of confusion to the design engineer.
Lawson and Fano,! Cohn,* and presumably South-
worth,? base their assumptions on the same ladder net-
work prototype (Fig. 2). In spite of this similarity,
Cohn has indicated how different results are obtained
in each of these papers. Actually the situation i3 not
difficult to understand when one considers the number
of approximations involved in the synthesis procedure
and realizes that little effort has been made to justify
any of them rigorously.
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Fig, 1—Schematic of a direct-coupled filter.
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Fig. 2—Ladder network prototype.

The fact that the differences observed by Cohn are
minor suggests that the methods used are the same in
principle. It is the object of this paper to show that this
is the case and to unify the whole problem by putting
the approximations required for the existence of a gener-
al synthesis procedure, based on a ladder network proto-
type, on a formal basis. By way of justification it will be
indicated how the approximate synthesis is a limiting

s H. J. Riblet, “Synthesis of narrow-band direct-coupled hlters,”
Proc. IRE, vol. 40, pp. 1219-1223; October, 1952,
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form of an exact transmission-line synthesis. As by-
products, we obtain 1) a quantitative estimate of the
error involved in the ladder network approximation, 2)
slightly more concise formulas than previously given,
and 3) a demonstration of an exact equivalence be-
tween direct-coupled filters and quarter-wave-coupled
filters using Mumford’s approximation for the quarter
wavelength of line. Finally, the general synthesis given
by Lawson and Fano! is derived, and it is shown how our
formulas for the case of direct-coupled filters may be
obtained as special cases from their formulas.

FormaL THEORY

This section considers the consequences of the follow-
ing two simplifying assumptions.

1) The admittance transformation of the reflecting
elements, which relates the input voltage and current,
v; and 7, to the output voltage and current, v, and 7y,
may be written

iy = 0-dp + 5+/po

7)52—]__"1'0“{“0"2)0, (1)
Vp
where p® is a positive real constant, to be called the
inversion factor.
2) The admittance transformation of the intercon-
necting half wavelengths of waveguide, may be written

1.1' = 110 + 0"1’0
7)4;=P'i0+1"2)0. (2)

where p =7 sin 0 with 0=2xl/\,.

Now the interest in 1) and 2) arises from the fact that
they are, as will be shown in a very broad sense, neces-
sarv and sufficient for the existence of a general syn-
thesis procedure for direct-coupled filters based on a
ladder-network prototype. Accordingly, differences in
previous results!-?* must arise from the approximations
used in relating p and $ to reactance and frequency.

How this can be demonstrated is outlined in Appen-
dix I. First, the possibility of connecting the reflecting
elements with transmission line sections having the ad-
mittance transformation,

= 0i .

7 ?o§ ov—i— 7 sin fvg @)

v; = j sin 0iq + cos Oy,
is considered and then excluded when it is found that,
in general, the input admittance of such a cascade can-
not have the form required by ladder network proto-
types. (Note that the coefficients of (1)—(3) are transfer
matrices” rearranged in DCBA form.) When (3) is re-
placed by (2) such a synthesis can be carried out if,
and only if, the general circuit parameters of the reflect-

¢ p is the coupling reactance, X2, of Lawson and Fano, op. cit.
We have chosen to denote it by p to emphasize that it is, for p>1,
numerically equal to VSWR of the reflecting element.

7 E. A. Guillemin, “Communication Networks,” John Wiley and
Somns, Inc., New York, N. Y., vol. 2, pp. 144-152; 1935,
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ing elements, assumed to be analytic in p, simplify to
the form in (1). Eq. (2) is justified further in Appendix
II, where it is shown that if the admittance inverters,
designed on the basis of a ladder network prototype,
are equally spaced on a uniform transmission line, and
and if the inversion factors are allowed to become arbi-
trarily large so as to preserve the form of the insertion
loss function, though not its bandwidth, then cos 6
tends to unity and the upper-corner sin 8 tends to zero,
and (2) is exact. Of course, the validity of (1) remains to
be established in each application.

To show that a direct-coupled filter consisting of a cas-
cade of alternate (1) and (2) matrices corresponds to
every ladder network prototype readily follows with the
help of the equalities,

o )=GOG NG
(9)-GaG a6 o

Consider a ladder network prototype which can be
written in matrix form as

(GGG ) o

since the first and alternate matrices are the admittance
transformations of shunt resonant elements and the
remaining matrices are the admittance inverters that
correspond to changing from shunt to series. Applying
(4)® to the resonant elements of (6) and eliminating the
unity admittance inverters by means of (5) results in
the matrix product,

0 fA\N/1 O\N/O fifo\/1 O 0 f»
(1 O><p 1)(1 0 )(p 1) o (1 0)’ )
which is of the required form if
pr=f1, p2 = f1-fo, - (8)

The converse is not generally true, but if we terminate
the direct-coupled filter, we can always find a termi-
nated ladder network prototype with the same input
admittance function. Accordingly, it is convenient to
carry through a general synthesis procedure for the
determination of the p’s without requiring the f's. We
now consider the admittances seen at various points of
the network assuming a known terminating admittance.
If V;=N;/D;, where N; and D, are polynomials in p,
is the admittance preceding

GG )

8 Any common multiplicative factors may be ignored because
they cancel out of numerator and denominator once a terminating
admittance is selected and the input admittance is determined.

(4

and

‘g Pn = fn'fn—l, Pry1r = fn-

)
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and 1,1=N;/D;; is the admittance into which it is
transformed by (9), then

Ni1 = ppN; + piDy;

If the admittance, Y,.1, terminating the cascade is a
constant, then YV, is a first degree polynomial in p. In
particular, the degree of N, is one higher than the de-
gree of D,. This is true for all admittances looking into
the admittance inverters. For, if it is true for N; and D;
in (10), it is certainly true for N; 4 and D;_;. Thus the
input admittance of a cascade of the form of (7) is a
rational function of p whose denominator is of degree
# in p while its numerator is of degree n—1. It is, of
course, positive real in the sense of Brune.? Of course
the input impedance of the network can be determined
from the given insertion loss function by the method of
Darlington.’® Then the p; associated with Y, ; can
always be determined by dividing the coefficient of the
highest power of p in its numerator by the coefficient
of the highest power of p in the denominator. This fol-
lows from (10). We also see that ¥; equals the denomi-
nator, D;, of Y,; divided by the remainder when
N;.1/p. is divided by D,_.

This procedure can be summarized in a continued

Di——l = N, (10)

fraction expansion for the input admittance, Yo, of
the cascade terminated in an admittance, R.
p1L
Vo=pp +—————
P2
p2p
pnp + T (11>
(Pn+1)/ R

The use of the continued fraction expansion simplifies
certain manipulations once it is clear that the value of
Vo is unchanged when one multiplies the quantities
directly above and below any of the {raction bars by
the same quantity. Thus in (10), we may replace the
second p; by 1, if we divide both py’s below it by py.
Thus Y, can be written
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Thus, for every terminated direct-coupled filter there is
a corresponding terminated ladder network prototype
having the same input impedance, although the termi-
nations are not in general the same. This is precisely
the equivalence used by Lawson and Fano! to give a
general synthesis procedure for direct-coupled filters.
This discussion, however, avoids the troublesome react-
ances, X s and X which were invoked by them.

In general, the values of  which are of practical inter-
est are small, whereas the formulas due to Bennett!! and
Belevitch (modified by Orchard)!? for the element
values, f,, of the ladder network prototypes vielding
maximally flat and Tchebycheff performance assume
that the value of the {requency variable w is equal to
unity at the edges of the pass band. Accordingly, we
consider the effect of replacing p in (11) by ¢p. We then
find that the form of the continued fraction can be pre-
served, if we multiply numerator and denominator of
each fraction bar by ¢ The resulting continued fraction
is

P1
Vo= PliP + T
pat?
pot?p + ———

4

pal’
pntzp + -

— - (13
(pni1)?/R 19

Thus a narrowing of the frequency scale by a factor of
1/t is accomplished by multiplying the inversion factors
at each end of the filter by ¢ and all of the other inversion
factors by £

For narrow-band filters, the dimensional tolerances
are relaxed by replacing some or all of the half wave-
lengths of waveguide by sections an integral number of
hall wavelengths long. Increasing the length of a filter
in this way also increases its peak power handling abil-
ity. In fact, it is readily shown, by the methods of this
section, that for fixed band-pass characteristics the
maximum voltage in a given cavity section varies

Vo= pmp +—

(pz/m)ﬁ -+

8 Q. Brune, “Synthesis of a finite two-terminal network whose
driving point impedance is a prescribed function of frequency,” J.
Matk. Phys., vol. 10, pp. 191-236; October, 1931.

10 S, Darlington, “Synthesis of reactance 4-poles,” J.
Phys., vol. 18, pp. 257-353; September, 1939

Math

PnPr—2 * R

g
Prtifn—i * * -

( PrPr—g * (12)
Pr—iPn—3 °

1W, R. Bennett, U, S. Patent No. 1,849,656; March 15, [932.

2V, Belevitch, “Tchebyshev filters and amplifiers networks,”
Wireless Eng., vol. 29, pp. 106—107; April, 1952,

H. J. Orchard, “Formulae for ladder filters,”
30, pp. 3-5; January, 1953.

Wireless Eng., vol.
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inversely with the square root of its length measured in
half wavelengths. The change in (19)-(22) required to
give the same pass-band characteristic when the length
of a given transmission line section is increased to » half
wavelengths is readily seen from (11). Here, if the cor-
responding p is replaced by #np, no change in Y, results
when the adjacent inversion factors are divided by #.

This section is concluded by establishing the exact
equivalence between a direct-coupled filter and a quar-
ter-wave-coupled filter (Fig. 3) employing Mumford’s
approximation for a quarter wavelength of waveguide.
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Fig. 3—Schematic of a quarter-wave-coupled filter.

First, the admittance transformation,

(kP 1+ (k;b)2>

1 o (14)

for k=% (quarter-wave coupling), 3/2 (three-quarter-
wave coupling), etc., is that used by Mumford® to
approximate sections of waveguide an odd number of
quarter wavelengths long. We are required to show that
a matrix product of the form,

(6T

l(fn’“k)ﬁ -
'<0 1 > (13)

is precisely equivalent to (7), since we have already seen
how in (4), the matrices involving the f;'s are the ad-
mittance transformations of resonant cavities, except
for a multiplicative factor. This is done by replacing
the first and last terms with the help of the identities,

10pll—kp~fl() 1
—k A /1 A
(5706 DG D)o
1 0/\p 1/\1 O
and the other terms involving f’s by using the identity,
GG D6 )
1 0/\p 1/\1 —kp

=f7;<(1) (Ji —1276);0). (an

Then the matrices involving 14-(kp)? are eliminated
using the identity,
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(0 fifi+1>
1 0

_<0 fi ><kp 1+(kp)2><—kp f@ﬂ) as)
1 —kp/\1 kp 1 0/

This equivalence, of course, only operates in one direc-
tion. For a direct-coupled filter network there is no

equivalent quarter-wave-coupled flter network, in gen-
eral, without specifving the termination.

DESIGN FORMULAS

When expressions for fy;,'"'? are substituted in (8)
and suitable allowance is made, according to (13), for a
change in frequency scale, general formulas are obtained
for the VSWR'’s of the reflecting elements of maximally
flat or equal ripple, direct-coupled filters. The equiva-
lence between (15) and (7), results in similar formulas
for the VSWR’s of the reflecting elements of quarter-
wave-coupled filters. Table I gives these formulas to-
gether with the figures, equations, and definitions re-
quired for design purposes.

Table II gives formulas for the line lengths separating
the reflecting elements, together with an equation and
the definitions required for design. These formulas are
conventional except for the allowance for end effects.
This addition has been made because the author’s expe-
rience shows that in some applications end effect cor-
rection must be taken into account in order to avoid sig-
nificant experimental error.

The use of Table I formulas requires the determina-
tion of & (for equal-ripple performance), #, w,, and ¢
in that order. The value of % is readily obtained from
the tolerance given for the pass-band ripple or VSWR.
Selection of # is made to yield the desired skirt steep-
ness. The formulas for P are used for this purpose
where @ equals a frequency scale factor multiplied by
the departure of the frequency from the filter midband.
For quick estimates this can be done in terms of fre-
quency but for greater accuracy the use of guide wave-
lengths is recommended. Once # and % are fixed, w, is
found from the corresponding expression for P;. For
example, if a two-section maximally flat filter is speci-
fied to have 10-db loss at frequencies corresponding to
No; and N, then Pr=10=1+4w* so that w,=A¥3.
Where the bandwidth of a maximally flat filter is speci-
fied at the 3-db points wy=1; if the bandwidth of an
equal ripple filter is specified at the extremes of the
equal ripple tolerance, wy=1. The ¢ occurring in the
formulas is a generalization of the notion of total Q
introduced by Mumford. It is determined by the re-
quirement that ¢ sin 0 =w, for the two specified guide
wavelengths A,,, and Ay, at which symmetrical behavior
is expected.

DEeriNiTIONS FOR TABLE |

The VSWR of the reflecting element is p. P; is the
insertion loss function obtained by dividing the awvail-
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TABLE 1
InveRSION FacTOR FORMULAS
f
Equal Ripple Maximally Flat
2 sin —
w
pr = o pr=12sin —
v 2n
3T
4 sin ——-sin —
2n 2n L3 o7
oy = e T p2 = t*+4 sin —-ssin —
2 4 in? 2n 2n
v T
Direct- 1
ire ct'Coup ed (19) (20)
Filter
1si 2 — D7 . (20— 37
s +sin
R 2 Q- Dr . Q2i—3)r
pi = 1% - pi = %+4 sin sin
L, G — D z 2n
¥? + sin? ————
7
Pl = p1 Prl = p1
}"‘L:T'sz "'—Ln)]
i i &
' YRRV r 2 |
Generator ! 2 N n el lLoad
17
2 sin —
. kK
o1 = fr e b pr=12sin ——k
0% 2n
. 3
2 sin —y
. 3
pp = p—— — 2k pe = -2 sin — — 2k
2n
%+ sin®* —
Quarter-Wave-Coupled (21) (22)
Filter
. (%= D L, T
2 sin -*-2—~<'y2 -+ sin? —} - ( 1
=t “ - ~ 2% pi= b2 sin 0k
. 2w 1
7.(.),2 + sin? _> Cee
7
P = pm Pn = P1
(n odd only)
e Wi nd T pe B L
L L
i i
Generator £ £ A £ 4 © A Load

TABLE 1 Cont’d next page
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TABLE 1 (Cont'd)
Defining Equations
Pp, =1+ [hTu()]?
P = w2
v = sinh 1 sinh™1 — (23) p=t
12 i
]
_ W()\a; )\az)
t = wp cSC —— o o, (29)

TABLE 11
Line LEncTtH FORMULAS

L= Do (‘EL d’i‘“) — Ti = Tise
Agy Ao,
= ﬁl_—‘_ Mg _ ((I)l + ?iﬂ) — T: — Tise (25)
}\ax'}‘az ( ¢‘z+l
l= kot — e e L 0
Mg+, \2 + !
DEerFINING EQUATION
pi = cot? ‘;” (26)

able power by the power into the load. The number of
resonant sections is #. The pass-band, insertion-loss
tolerance is given by & and is related to the maximum,

pass-band VSWR, puax, by
k= (Pmax—l)/ (2\/pmax)-

In the expression for ¢, N, and \,, are the guide wave-
lengths at which the skirt insertion loss is specified and
wy is the corresponding value of w determined from Pj.
k=% (quarter-wave coupling), and 3/2 (three-quarter
wave coupling), etc. w is equal to ¢-sin (wAy/Ny), where
Ao, 1s the mean guide wavelength given by 2X,,-N,,/ (N,
FAgo) = Moy +HNo0) /2.

DEFINITIONS FOR TABLE I1

€ is unity for direct-coupled hlters and zero for
quarter-wave-coupled filters. T is the end effect error
associated with the sth reflecting element. ¢ is positive
for series capacities and shunt inductances, and nega-
tive for series inductances and shunt capacities.

ComPaRrIsON WITH PrEVIOUS RESULTS

Lawson and Fano!

Neglecting Xs and X, comparison of their (146)
with (11) of this paper indicates that p;=X,72. We
note that (8) can be written, with a suitable frequency
transformation

p1 = 1Cy, pp = 12C1Ls, ps = 12L:Cs, + - -

t-(Cn or Ly).

5 Prtl

Il

27

Since our ¢ is defined to be the reciprocal value of sin @
at the band edges, and p is equivalent to Z in their

(145), we have t=1/Lw. Hence their (156) to (159)
are seen to be equivalent to (26), except for the sub-
script on L which should be a superscript. Conse-
quently (19) and (20) are essentially special cases of
general formulas given in their paper.

Egs. (160) to (163)* can also be obtained. According
to Lawson and Fano, w is the frequency bandwidth for
unity value of w’ so that our value of wy=1. Thus by
(24),

/= cse 77'( g1 92) >\01 + Ags ~ 2)‘90 , (28)
Ay + Ay 77( g1 02) TANg
where AN, =N\, —\,, and A, is the mean guide wave-
length. Now
AN, = Agp® . Ag*w
)\03 7\02(.00
so that
2 )\()2 o
= (29)
)\go w
and finally since (No/Ngy)%=1—(w,/we)? we have
2 wg we\ 2
t——~——~{1 ——(——)} (30)
T W wo
Since
{ bi| = pill? — pUE = pai2 (31)

we obtain their (160) except that w should be w. In
their (161) and (162), C; should be taken outside of the
radical sign.

Southworth?

If we put Ci=f1=2 sin n/2n in (160) of Lawson and
Fano,! we immediately obtain (9.2-7) of Southworth.
His (9.2-8) is immediately obtained from (20), if we
use the above approximation for #, put IBml =Pm
and replace the product of sines by the difference in
cosines.

Mumford®

It is clear from (A10) of Mumford?® and (27) of this
paper that in the narrow-band limit, Q; is approxi-
mately equal to /2 when w, is chosen to be unity.
Now the fi's that occur in (6) when multiplied by 7/4



1958

are precisely the (,’s in his (15) in the small angle limit.
Thus (22) can be written:

T (4 .o
Ql = 71'/4})] = Z —QtSIH:)-"* k7r/-1-

™ i
0 /4 ™ {4 Ousi (2t — D kﬂ'}
;= ;= —{—(Q;8in ——— — —
’ T 4 T t 2n 2

0, = Ou.

These are precisely Mumford’s results when the selec-
tivities of the coupling lines are included.

If assumption 1 is satisfied by the reflecting elements,
then the above remarks concerning Mumford’s paper are
true. This condition, though sufficient for a synthesis of
quarter-wave-coupled filters, in terms of a ladder net-
work prototype is not necessary. As explained in Ap-
pendix I, it is possible to define the Q of a cavity termi-
nated in more general reflecting elements. For such
cases, the characteristics of the reflecting elements can
be determined from the required Q's by means of for-
mulas derived {or each case. For the cases of usual
interest, three such formulas have been given in Riblet
and Reed.® There it was pointed out by Reed that the
formula relating to the case .of constant susceptance is
equivalent to Mumford’s. It is also indicated that the
formula for the inductive case is equivalent to that given
by Reed.®

Eq. (22) gives the value of p; directlv since it can be
shown {or the inductive case, that the error in approxi-
mating Q. bv w/4p, is of the order of ¢q*/5.

Cohn*

The value of L in Fig. 5 of Cohn* is the same as the
t~! used in this paper except for a typographical am-
biguity and the use of the small angle approximation.
The values of X; ;1, except possibly for sign, follow from

(p)2
1~ (p)™

For completeness, the frequency transformation due
to Cohnt is derived at this point. In the limit of large
susceptances, p, =b;% From (13), we see that a {requency
variation common to the inversion factors can be in-
cluded in the frequency wvariable. Now, if p;=p.f2(p)
with p,; constant, the theory is applicable when we re-
place p by f(p) p except for a relatively small error in
the end elements. For inductances which vary directly
as \, (this is approximated by waveguide irises), f(p)
=N,/ N, Where X, is the midband guide wavelength.
Then

Xi,1‘+1r = ‘ b 1“1 =

P = A/ Ngq sin (mh/N,). (32)

13 J. Reed and H. J. Riblet, “Discussion on synthesis of narrow-
band direct-coupled flters,” Proc. IRE, vol. 41, pp. 1058-1059;
August 1953. See (4).

4 J, Reed, “Low Q microwave filters,” Proc. IRE, vol. 38, pp.
793-796; ]uly, 1950. See p. 794.
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Using the small angle approximation for sin 6, we have
b= gmNo/Ngy — 1),

with A,,= (A, +N,,) /2, where N, and \,, are the guide
wavelengths at the band edges.

This frequency wvariable has, as Cohn has pointed
out, the important property that the response curve of
the filter is symmetrical in A, rather than in 1/A,.
Curiously, (24) for ¢ is not altered by this transformation,
a statement which is not true for capacitive irises. The
principal effect of this transformation on the design pro-
cedure is to alter the midband guide wavelength which
enters into the determination of L and ! in (25). For
bandwidths as great as 10 per cent, and difference be-
tween the two formulas for L, due to this transforma-
tion, is generally less than the error due to the neglect of
T';, and so we have given the formula for the mean guide
wavelength which is a rigorous consequence of (1) and
(2). The approximate formula is simpler for computa-
tion and is to be recommended accordingly for design
purposes whenever inductive irises are used.

Riblet

Riblet® is concerned with a first order equivalence
between direct-coupled filters and quarter-wave-coupled
filters in contrast to the zero order equivalence estab-
lished in (14)—(17). Its interest lies in the fact that a
synthesis in terms of quarter-wave-coupled cavities
requires less restrictive assumptions on the nature of
the reflecting elements (see Appendix I) than is re-
quired for a direct-coupled filter synthesis, based on a
ladder network prototype. Accordingly, the procedure
is capable of a high degree of accuracy and generality
when used with the recommended frequency rirans-
formation.

COMMENTS ON ASSUMPTION 1

The applicability of this assumption to practical
waveguide reflecting elements must be justified by
consideration of their properties or by the construction
of experimental filters. Admittance transformations for
shunt susceptances have been given® which are con-
stant and which varv inversely and directly with A,.
These are correct to the first order in a frequency vari-
able, Q, where Q==jp/x. Written in the form of (1), these

become
( B2 _4/_1 + cos ¢o (1 I
$in ¢ ’ 1 — cos ¢y sin ¢ |
; T —"cos g [ Xe: ke |
[ 1+ —F— I
1 + cos ¢ sin ¢y sin ¢y |
where

Ry = -+ sin? ¢o COS ¢

ky = ¢g + sin ¢o-COS oo,
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and the upper signs are used with inductances, the
lower signs are used with capacities, and they are re-
placed by zero for constant susceptances. Of course ¢q
is the value of ¢, previously defined, when 2=0. For
inductances, the terms on the principal diagonal tend
to zero with increasing susceptance. Accordingly the
theory is particularly applicable to this case, as Cohn*
has pointed out.

COoMMENTS ON ASSUMPTION 2
The principal justification is the following theorem:

The matrix product,

(0 avt)(l 137(0 Col {1 b
cos*f| 1 0 11 ‘i ollp 1
av/i ? J et J[ )
(0 ct) (1 ;/3%( 0 Cap1V/1)
.I1 I ! , (39
— 0]y 1| pd 0 |
Cnl J S LenaVt J
has the form
D(pt, C(pt, B/t
oen 0< (1, 1f/t) (p if/ ))} (35)
B(pt, §/1) A(pt, p/t)

where 4, B, C, and D are polynomials in p¢ and $/¢, and
the only nth degree terms are (p£)* and (p/£). That is,
terms of the form p*5»* do not occur.

When p=p=j tan 6, the matrix product of the
theorem represents the exact admittance transforma-
tion of a cascade of admittance inverters, equally
spaced on a uniform transmission line, whose depend-
ence on ¢ is consistent with the form obtained in (13)
from a ladder network prototype. Moreover the deter-
minant of (35) is unchanged by replacing § by zero,
and cos 8 by one.

Comparison of the input impedance and insertion loss
function obtained from this matrix product, with the
corresponding functions obtained with § put equal to
zero, will indicate the error in the approximate solu-
tion. Now the coefficient of every power of p in 4, B,
C, and D will contain terms contributed by p and by $
since $§ must be replaced by $ in an exact calculation.
Although the nth degree term contains only p” and $*,
in general, terms of the form p"p° appear. Now the
theorem states that in each coefficient, the contribution
of p7 is of the order of ¢ while the corresponding contri-
bution of p" is of the order of /. In general then, the
error in neglecting $ terms is of the order of 1/#2, and
for the coefficient of p~, the error is of the order of 1/£2~.
The limit for large £, with £p fixed, can be attained then
by putting $=0 and cos §=1.

Since the determinant of (34) is unity, the insertion
loss function is given, in the limit, by

1/4 cos® (0) | A(pt) 4+ B(pt) + C(pt) + D(pt) 2. (36)

This is an even polynomial in tan 8 of the form,
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dgntzn tan?” @ + dgn_zt"“g tan?"—2 @ + L
Multiplication by cos?* () gives the expression,

@2l SIN2" 6 = Gou_of®™ 7 sin?2 (§) cos® (6) + - - - .

Now the resulting terms in cos? 8 can be replaced by
sin? # but the error in replacing cos? § by 1 is always of
the order of 1/#2. Thus in the exact admittance trans-
formation (24) approaches, as {— «, the limit obtained
from it by replacing $ by zero and by j sin 8. Assump-
tion 2 is thus rigorously justified.

It may be of interest to observe that assumption 2
is not essential for a synthesis based on a prescribed
insertion loss function. The exact transmission line
synthesis procedure for filters consisting only of equal
length impedance transformers mentioned by Riblet!®
and discussed in detail by Seidel® is immediately appli-
cable so long as assumption 1 is valid. Seidel has arrived
at the same conclusion and has applied this theory to the
design of direct-coupled filters. He is concerned, how-
ever, with transmission line elements which are nomi-
nally a quarter wavelength long so that his results do
not appear to be directly applicable to the narrow
band problem. This paper is the direct consequence of
early efforts to carry through the exact synthesis of a
narrow band filter on the basis of the exact procedure.
When it was discovered that the p roots® had to be
calculated with extreme accuracy, in order to satisfy
(2) for physical realizability, the present analysis of
the approximate solution was forced on the writer.

CONCLUSIONS

Formulas previously given!-2:4 are rederived on the
basis of two approximations which are shown, under
general conditions, to be necessary and sufficient for a
general synthesis of direct-coupled filters having the
frequency behavior associated with ladder network pro-
totypes. Differences in the formulas, not to due to typo-
graphical errors, are traced primarily to an approxima-
tion used to express the susceptance of a reflecting
element in terms of its VSWR, and secondarily to small
angle approximations and the use of differentials in
place of differences. Formulas® for the design of quarter-
wave-coupled filters are rederived on the basis of an
exact equivalence which is given for a direct-coupled
filter and a “Mumford” quarter-wave-coupled filter.

The usefulness of the formulas is extended by showing
how the VSWR’s of the reflecting elements are altered
when the interconnecting lines are lengthened in multi-
ples of half of a guide wavelength. It is shown how other
approximate solutions®-?* are a rigorous limit of an exact
solution and that the error in each coefficient of the
insertion loss function, made by replacing each half

5 H. J. Riblet, “General synthesis of quarter-wave impedance
transformers,” IRE Traxs. oN MICROWAVE THEORY AND TECH-
NIQUES, vol. MTT-5, pp. 36-43; January, 1957. See p. 38.

¥ H. Seidel, “Synthesis of a class of microwave filters,” IRE
Trans. oN MicrowavE TuEORY AND TECHNIQUES, vol. MTT-5,
pp. 107-114; April, 1957,
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wavelength of transmission line by a series resonant
element, is of the order of one half the square of the
percentage bandwidth measured in guide wavelengths.

AprPENDIX [

We are concerned here with the conditions satisfied
by general reflecting elements if it is required that they
are to be used in a general synthesis of direct-coupled
filters’ based on a ladder network prototype. The proofs
assume that the primary frequency sensitive elements
of the direct-coupled filters consist of equal lengths of
transmission line which separate them or, as we shall
see, series resonant elements which approximate trans-
mission lines in their frequency behavior. Although
the assumption of equal line lengths may not be a physi-
cal necessity, it is difficult to imagine any general syn-
thesis theory based on a ladder network prototype which
does not require this simplifying assumption.

Consider the admittance transformation, (R), (D, C,
B, 4 matrix), of a symmetric, nonresonant, reflecting
element, written,

(R) = < @l + 0 + a:f +
- (6o + 010 + 807 + b0° +

weGo Sy

B(6)
where 4, B, C satisfy the following conditions:

1) 4, B, and C are analytic functions of the complex
wvarlable 6 in the vicinity of =0,

2) A*—BC=1
ar = ¢/2 by = ¢
Ao = 0 b1=0

I
1

daz

— ¢*/48 + (¢ — ¢ b

1{ we denote by (7)), the admittance transformation
of a uniform transmission line so that

o :<c.0? (0—{—7r)jsin(0+7r)>}
jsin (0 4+ 7)) cos (6 + 7

then we may prove the following theorem.

Theorem I

If w is a frequency variable assumed to be an odd
function of 6 then matrix products of the form,

(RY(DY(RH(T) - - (T)(Ropa),

cannot yield a general representation of the input imped-
ance functions in @ of ladder network prototypes.

. M This term is defined by Fig. 2 and has also been previously
tHustrared.12:45
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It should be observed that the implied assumption
has been made that resonance, w=0, occurs when the
connecting lines are all one half-wavelength long. This
assumption is no restriction, since identical line lengths
can be added to or subtracted from each (R,) without
changing the conditions of the theorem or essentially
altering the input admittance function of the cascade.
Moreover, it is the assumption previously made 248

Proof

We require that for arbitrary (R) satisfying condi-
tions 1 and 2 that
4Qw)
1

since the right-hand matrix represents the ladder net-
work element consisting of a single resonant element
of given Q. This requirement is certairly satisfied by

the reflecting elements mentioned previously.1—5
If

1
(R)(T)(R) = ( )

jleo + a1 + 6% + co® + - - ))

) a0 + af® + a0+ - -

and

— (1 — 622 ...
m:( (A —y2--)

—j<0—03/6~-~)>
_j(g__gs,/6...)

— (1 — 622 .)

and put w=60—wf?, the following conditions on the co-
efficients of (R) are found.

Co = 1/(1)
61=O

(e
R YR Y W ¢)es (

where ¢ is determined by
10 = 1/¢® — 1.

It is interesting that for a suitable choice of the fre-
quency behavior of the reflecting elements, a shunt
resonant element can be exactly obtained with a half
wavelength of transmission line. It should be recalled,
of course, that the Q previously used?®3! is onlv ap-
proximate and assumes that the resonant element is
terminated in a match.

The theorem follows, however, when an attempt is
made to combine three reflecting elements satisfying
(37). In this case, it is readily shown that a product of
the form (R)(T)(R)(T)(Rs) will be, in general, of
second degree in w in both the numerator and the
denominator of the input admittance function. This, of
course, makes it impossible to represent the general
two-element ladder network in the required form.
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We mayv now replace (T') by

T) = <j~—si1n @+ —?)

which is an approximation justified in Appendix II
and prove the following theorem.
Theorem B

If w, the {requency variable, vanishes for §=0 (half
wavelength spacing) and sin @ is an analytic function
of w, then matrix products of the form,

(BT RN(T) - - (T)(Rusa),

can define the general input admittance function of all
ladder network prototypes only if

{ 0 ]\/PJ
(R) = j 0 }
\/Pz )

where p, Is a positive real constant.

Proof

We consider consequences of the assumption that

4 C —1 0><A cr__<1 feo
<B A><-jsm0 -1/\B A>'_ 0 0 >’

where f is a constant. If we put w =0, it is readily shown
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showing that some frequency variations in (R,) is per-
mitted. However, if one considers a cascade containing
three of these reflecting elements, then the condition
w=sin § can be shown to be necessary in order that the
frequency behavior of two element ladder network
prototypes be representable in the given frequency
variable, w.

AppeENDIX 1]

The proof of the theorem underlying assumption 2
follows by mathematical induction.

Consider
{O m”l ;5] [ cupt Cnl 11
POl YA
leat | ) leut "pj

It has the general form,
D(pt, /1) tC(pL, 17/15)]

39
B(pt, /1) (39)

(

!

|1 _ ,
|— A(pt, p/1)|
L )
in which the highest power of p occurs in D, and the
highest power of # occurs in 4. Furthermore the form
of (39) is not changed by multiplication by matrices of
the form of (38), while the highest power of p still
occurs in D and the highest power of § occurs in 4.

that A(0) =0, while B(0)-C(0)= —1. Moreover, since Thus the original product (34) can be written

I(clp\// v/ H D(pt, /) 1C(pt, [";/;)} o1

{ - flﬂﬁﬁtwﬁ A@tmﬂf{ ! 0 (39)
Y _tJ [ ’ ) (n+1\/

24B+jd? sin 8=0, from the lower left-hand element
of the product, we conclude that 4 =0 or j4 sin 8 = — 2B.
The latter case is excluded by the fact that B(0)=0.
From the upper left-hand element of the product, we
conclude that CB= —1 and from the upper right-hand
element that —C? sin =jfw. Therefore, the permitted
form for (R;) is

Je )

sin 6

vE

0

(R) =

b2

When this multiplication is carried through, one ob-
tains

A
|

61C7L+1(Pl‘D + B)

(ptC + A)

¢ n41

| .
’ Cnta _

|——(C + p/td) — (D + p/iB)]

\ c1€na1 1 J

This is the result claimed in the theorem. The C term in
this matrix contains (pt)* and the B term contains
(p/t)». No cross product terms having a total degree of
7 can occur.
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